Syncope Case Study

38-year-old female with recurrent syncope occasionally occurring during emotional stressful times. Her physical examination and 12 lead EKG are normal.

Approach to the Patient with Syncope

Jon A. Kobashigawa, MD

DSL/Thomas D. Gordon Chair in Heart Transplantation Medicine
Associate Director, Cedars-Sinai Heart Institute
Director, Cedars-Sinai Heart Transplant Program
Clinical Professor of Medicine
The David Geffen School of Medicine at UCLA

Conflict of Interest/Affiliation Disclosure Statement

I have the following relationship(s) to disclose:
Research grants, advisory boards, speaker honoraria

Name of Companies with which relationship exists:
Novartis, XDx, TransMedic

Syncope: Definition

- a syndrome in which loss of consciousness
 - relatively sudden,
 - temporary,
 - self-terminating
 - usually rapid recovery
- due to inadequate cerebral perfusion,
- most often triggered by a fall in systolic arterial pressure below 70 mmHg

Impact of Syncope on Mortality Risk

- Vasovagal Syncope has low mortality risk
 - But recurrences are a concern
- Syncope of presumed cardiac cause is associated with high mortality risk

Syncope: Causes

Neurally-Mediated Reflex
- Vasovagal Syncope (VVS)
- Drug-induced ANS Failure
- Situational
- Cough
- Post-micturition

Orthostatic
- Hypotension

Cardiac Arrhythmia
- Bradycardia
- Sinus pause/ arrest
- AV block
- Tachycardia
- VT
- Long QT syndrome

Structural Cardiac-Pulmonary
- Aortic Stenosis
- HCM
- Pulmonary Hypertension
- Aortic Dissection

Unexplained Causes = Approximately 10%

Syncope: Epidemiological Data

- 40% population, presumed syncope at least once
- 1-6% of hospital admissions
- Approx 1% of ED visits per year
- 10% of falls by elderly are believed due to syncope
- Injuries:
 - 6% major morbidity (e.g., fractures, MVA)
 - Minor injury in 29%

References:

Impact of Syncope in USA: Annual Expenditures

- Syncope evaluation and treatment > $2.4 billion
- Estimated hospital costs >$5400/hospitalization
- Treating ‘falls’ in older adults >$7 billion

References:
1. Benjamin C. Sun, MD, MPP, Jennifer A. Emond, MS, and Carlos A. Camargo, Jr., MD, DrPH. Direct medical costs of syncope-related hospitalizations in the USA. Am J Cardiol 2005;95:668-671.

Diagnostic Strategy

The Initial Evaluation: 4 Key Questions

- Did the patient suffer ‘true’ Transient Loss of Consciousness (TLOC)?
- Was TLOC due to syncope or some other cause?
- Is Heart disease present?
- Does the medical history (including observations by witnesses) suggest a specific diagnosis?

Essential Elements of the History

- Circumstances of recent event(s)
 - Eyewitness account of event
 - Symptoms at onset of event (warning symptoms)
 - Sequelae
- Concomitant disease, especially cardiac
 - Medication history
- Pertinent family history
 - Cardiac disease, Sudden death
 - Metabolic disorders
- Past medical history
 - Neurological history
 - Syncope

Essential Elements of the Physical Examination

- Vital signs
 - Heart rate, regularity
 - Orthostatic blood pressure change: symptomatic fall in systolic BP from a baseline value > 20 mmHg or diastolic BP > 10 mmHg, or a decrease in systolic BP to < 90 mmHg
- CV Exam: Is heart disease present?
 - Signs of heart failure with elevated neck veins, rales, S3 gallop, murmurs, lower extremity edema
- Neurological exam
 - Residual deficits?
- Carotid sinus massage
 - Perform under clinically appropriate conditions preferably during tilt-table test. Monitor BP
Carotid Sinus Massage (CSM)

Indication
- > 40 years
- Unknown syncope etiology

Method
- Massage, ~10 seconds, firm but do not occlude
- Supine and upright posture (on tilt-table)

Diagnosis
- >3 sec asystole and/or >50 mmHg fall in systolic BP
- Reproduction of symptoms (usually only occurs with CSM during upright posture)

Indications for Specific Electrocardiographic Monitoring

- In patients who have clinical or ECG features suggesting arrhythmic syncope:
 - Holter monitoring for patients with frequent syncpe or pre-syncpe (≥1 per week)
 - External loop recorders in patients who have an inter-symptom interval ≤ 4 weeks
 - Implantable loop recorder (ILR) for patients with recurrent syncpe of unknown origin, absence of high risk criteria, and high likelihood of recurrence
 - ILR should be considered to assess the contribution of bradycardia before using cardiac pacing

Adhesive Patch Electrocardiographic Monitoring

- Demonstrated improved clinical accuracy and detection of potentially malignant arrhythmias in atrial fibrillation patients compared with a 24-hour Holter Monitor in the same patients.
- Achieved both superior patient and physician satisfaction compared to 24-hour Holter.

Implantable Loop Recorder (ILR)

- An ECG monitoring system that is implanted subcutaneously
- Capable of recording, storing, and if necessary remotely transmitting ECG signals
 - Patient-activated and/or automatically-activated
 - Longevity of current ILRs up to 36 months

Selected Use Based on Initial Examination and Risk Stratification

- Head-Up Tilt Test (usually combined with CSM)
- Electrophysiology Study (EPS)
- Non-invasive Risk Stratification for Life-threatening ventricular tachyarrhythmias†
 - Signal-Averaged Electrocardiogram (SAECG)
 - Microvolt Twave alternans

† Generally exhibit high negative predictive value but low positive predictive value

Indications for Tilt Table Testing

- Unexplained single syncopal episode in high risk settings or recurrent episodes in absence of organic heart disease
- To demonstrate susceptibility to reflex syncope
- To discriminate between reflex and orthostatic syncope
- To differentiate syncope with jerking movements from epilepsy
- Evaluating patients with recurrent unexplained falls
- Evaluating patients with frequent syncpe and psychiatric disease

Tilt-Table Testing

- Upright posture during test decreases venous return and reduces LV filling.
- There is increased force of contraction due to increased sympathetic stimulation.
- Mechanoceptors in the ventricles respond to the increased force of contractions resulting in reflex parasympathetic discharge causing hypotension, bradycardia, or both.

Tilt-Table Testing

- Of patients without diagnosis for syncope, 24-49% have positive tilt-table test alone and 60-66% have positive test with Isoproterenol or nitroglycerin.
- Controls without history of syncope have positive tests in 10-30%.
- If the clinical history is consistent with vasovagal syncope, a positive tilt-table test can be useful.

Head-Up Tilt Test (HUT)

- Protocols vary
- Performed with or without provocative drugs
- Goals:
 - Unmask VVS susceptibility
 - Reproduce symptoms
 - Patient learns VVS warning symptoms
 - Patient more confident of diagnosis
- Not useful for predicting treatment benefit

Induction of VVS by Upright Posture

Cardioinhibitory & Vasodepressor Components

Indications for Electrophysiologic Study

- In patients with ischemic heart disease with suggested arrhythmic cause of syncope
- In patients with BBB when non-invasive tests have failed
- In patients with syncope preceded by sudden and brief palpitations when non-invasive tests have failed
- In patients with Brugada syndrome, ARVC, and HCM
- In patients with high-risk occupations

Electrophysiologic (EP) Testing

- Well established technique for detecting arrhythmias but less sensitive for bradyarrhythmias. Overall diagnostic yield is 30-50%.
- Of patients with unexplained syncope:
 - 15% have inducible ventricular tachycardia
 - 15% have inducible supraventricular tachycardia
 - 20-41% have findings suggestive of bradycardia
Neurological Tests for TLOC
EEG, Head CT / MRI
- Not useful for syncope evaluation
- Imaging may be warranted if there is concern re head injury from ‘fall’
- May be useful in non-syncope TLOC patients but neurological consultation is advised prior to tests

Psychiatric Evaluation
- In recurrent syncope, 20% have a panic disorder, generalized anxiety disorder, or major depression.
- A hyperventilation maneuver (open mouth breathing for 2-3 minutes) that results in syncope is strongly associated with psychogenic syncope.

Emergency Department Decision Rules and Syncope Units
- The San Francisco Syncope Rule has sensitivity and specificity of 98% and 56% for predicting adverse 30-day outcomes.
 - High risk features (CHESS: CHF, Hematocrit<30%, abnormal EKG, Shortness of breath, Systolic BP<90mmHg)
- SEEDS trial assessing the Syncope Unit in the Emergency Department found the diagnostic yield higher c/w SOC (67% vs 10%)

Specific Conditions and Treatment

Selected Specific Conditions
- Neurally-Mediated Reflex Syncope (NMS)
 - Vasovagal, Carotid Sinus Syndrome (CSS)
- Orthostatic Hypotension
 - Autonomic dysfunction
 - Drug induced
- Cardiac Syncope
 - Structural heart disease
 - Channelopathies
 - Long QT Syndrome (idiopathic, drug-induced)
 - Brugada Syndrome

Neurally-Mediated reflex Syncope (NMS)
- Vasovagal Syncope (VVS)
- Carotid Sinus Syndrome (CSS)
- Situational Syncope
 - post-micturition
 - cough
 - swallow
 - defecation
 - blood drawing
 - etc.
NMS: Clinical Pathophysiology

- Neurally-mediated physiologic reflex mechanism with two components:
 - Cardioinhibitory (HR)
 - Vasodepressor (BP)
- Both components are usually present:
 - Vasodpressor may be masked in the presence of severe bradycardia.
 - Pace or pre-treat with atropine in order to observe vasodepressor component

VVS: Optimal Initial Treatment Strategy

- Patient education, reassurance, instruction
- Salt/Volume
 - Increased dietary salt,
 - Increased volume intake
 - (e.g., electrolyte rich 'sport' drinks)
- Physical maneuvers
 - Standing / tilt-training
 - Muscle tensing, leg-crossing
- Support hose, Abdominal binders

Physical Maneuvers to Counter an Imminent Vasovagal or Orthostatic Faint

- Schematics illustrating physical counter-manuvers designed to delay an imminent vasovagal or orthostatic faint.
- Each of these maneuvers might boost blood pressure sufficiently to delay symptoms. The objective is to "buy time" during which the affected individual can seek a safe haven.
- (A) The subject is depicted using leg-crossing with lower body muscle tensing (left) or squatting (right) to enhance blood pressure. (B) Arm-tensing is illustrated.

PC-Trial (Physical Counterpressure Manoeuvres Trial)

- Physical counter-pressure maneuvers (PCM) are increasingly advocated to abort neuromediated or orthostatic faint
 - Squatting, arm-tensing, leg-crossing, and leg-crossing with lower body muscle tensing
- PC-Trial randomized 208 patients with VVS to conventional therapy (fluid/salt intake, counselling, avoidance) versus conventional therapy augmented by physical maneuvers.
 - After 18 months, the syncope burden was lower in PCM-trained patients versus control subjects (32% of PCM-trained and 51% of conventional arm patients experienced syncope recurrence)
 - PCM should be part of the treatment strategy in patients with warning symptoms

Randomized Trials of Pharmacologic Therapy for VVS

- **Fludrocortisone** for the prevention of VVS (POST II)¹
 - Fludrocortisone is of no benefit in reducing episodes of moderate to severe vasovagal syncope.
- **Beta-blocker** use in VVS (POST)²
 - No benefit was found. But recent meta-analysis suggests benefit in those aged 242 years.
- **Midodrine** for syncope³
 - No efficacy. But may have benefit in orthostatic hypotension.
- **SSRI** for VVS⁴
 - Benefit with paroxetine but not observed in clinical practice.

Pacing / Ablation in VVS

- Early studies were not double blind
- Pacemaker implantation may create emotional and psychological responses that modulate reflex syncope and autonomic responses⁵
- Pacing therapy is effective in some but not all. Recent ISSUE-3 study with benefit in cardioinhibitory patients⁶
- Endocardial radiofrequency catheter ablation of the cardiac vagal nervous system with good outcome in select patients⁷

¹Sheldon RS. Canadian J Card. 2011; 27(5): S335-S336
²Sheldon RS. Circulation. 2006;113:1164-1170
³Romme JJ. Europace. 2011;13:1639-1647
⁵Kapoor W. JAMA. 2003;289:2272-2275
Carotid Sinus Syndrome (CSS)

- Syncope clearly associated with carotid sinus stimulation was thought to be rare (≤ 1% of syncope):
- Carotid Sinus Syndrome (CSS)
- CSS may be a more important cause of unexplained syncope/falls in older individuals than previously expected
- Carotid Sinus Hypersensitivity (CSH) implies positive response to carotid massage:
 - > 50 mmHg drop in systolic pressure
 - > 3 sec asystolic pause
 - Reproduction of symptoms
- CSH without symptoms is not treated

Orthostatic Hypotension: Etiology

- Drug-induced (very common)
 - Diuretics, Vasodilators
- Primary autonomic failure
 - Multiple system atrophy, Parkinsonism
- Secondary autonomic failure
 - Diabetes, Alcohol, Amyloid

Syncope Due to Structural Cardiovascular Disease

- Often life-threatening
- May be warning of critical CV disease
 - Aortic stenosis, myocardial ischemia, pulmonary hypertension, aortic dissection
- Assess culprit arrhythmia or structural abnormality aggressively
- Initiate treatment promptly
 - Specific for culprit condition

Syncope in Structural CV Disease

- Principal Mechanisms
 - Acute MI / Ischemia
 - 2nd neural reflex bradycardia - vasodilation, arrhythmias
 - HCM
 - Exertional syncope (increased obstruction, greater demand), arrhythmias, neural reflex
 - Acute aortic dissection
 - Neural reflex mechanism, pericardial tamponade
 - Pulmonary embolus/pulmonary hypertension
 - Neural reflex, inadequate flow on exertion
 - Valvular abnormalities
 - Aortic stenosis - output limitation, reflex dilatation in periphery
 - Mitral Stenosis, Atrial myxoma - obstruction to inflow

Treatment for Carotid Sinus Hypersensitivity

- Permanent pacing
 - Class I indication in patients with recurrent syncope caused by carotid sinus stimulation in the absence of any drug that depresses the sinus node or atrioventricular conduction.
 - Class IIa indication in patients with recurrent syncope without clear, provocative events and with a hypersensitive cardioinhibitory response.
- Permanent pacing is discouraged in patients with a hypersensitive cardioinhibitory response to carotid sinus stimulation in the absence of symptoms.

Treatment Strategies for Orthostatic Intolerance

- Patient education, injury avoidance
- Hydration
 - Fluids, salt, diet
 - Minimize caffeine/alcohol
- Sleeping with head of bed elevated
- Tilt Training, leg crossing, arm tensing
- Support hose, abdominal binders
- Drug therapies
 - Fludrocortisone, midodrine

Syncope Due to Cardiac arrhythmias

- Bradyarrhythmias
 - Sinus arrest, exit block
 - High grade or acute complete AV block
- Tachyarrhythmias
 - Atrial fibrillation/flutter with rapid ventricular rate (e.g., WPW syndrome)
 - Paroxysmal SVT or VT
 - Torsades de pointes (e.g., long QT syndrome)

Syncope Due to Bradyarrhythmias

- Class I indication for pacing
- Dual-chamber pacing in most cases
- Ventricular pacing in atrial fibrillation with slow ventricular response

Syncope Due to Supraventricular Tachyarrhythmias

- AVRT due to accessory pathway (e.g., WPW)
 - Ablation of pathway preferred
- AV Node Reentry (AVNRT)
 - Ablation of AV nodal slow pathway is preferred
- Atrial flutter
 - Ablate the Cavo-Tricuspid isthmus is preferred
- Atrial fibrillation
 - Drug therapy remains first-line
 - Linear/focal ablation may be a reasonable option
 - AV Node ablation with pacing remains a back-up plan

Syncope: Torsades

Treatment of Syncope Due to Bradyarrhythmia

- AV Node Reentry (AVNRT)
 - Ablation of AV nodal slow pathway is preferred
- Torsades de pointes (e.g., long QT syndrome)

Treatment of Syncope Due to Bradyarrhythmia

- AVRT due to accessory pathway (e.g., WPW)
 - Ablation of pathway preferred
- AV Node Reentry (AVNRT)
 - Ablation of AV nodal slow pathway is preferred
- Atrial flutter
 - Ablate the Cavo-Tricuspid isthmus is preferred
- Atrial fibrillation
 - Drug therapy remains first-line
 - Linear/focal ablation may be a reasonable option
 - AV Node ablation with pacing remains a back-up plan

Recommendations Concerning Driving in Patients with Syncope

Ischemic or Dilated Cardiomyopathy
 - ICD therapy indicated for SCD protection, but may not prevent syncope*
 - Ablation where appropriate

Channelopathies
 - Withdraw offending drugs
 - ICD (long-QT syndrome / Brugada syndrome)

Outflow Tract Tachycardias
 - Ablation is first-line

Arrhythmogenic Dysplasia
 - ICD therapy

* Olshansky B et al, JACC 2008
Summary

- Syncope is only one of many causes of transient loss of consciousness, symptoms are fleeting, events are often unwitnessed, and there is often an excessive sense of diagnostic “urgency”
- A thorough evaluation of the cause of syncope is warranted in all patients – not just in those deemed to be at high mortality risk
- The mere presence of an abnormal finding does not constitute a “diagnosis”
- The goal in every case should be to determine the cause with sufficient confidence to provide a reliable assessment of prognosis and treatment options