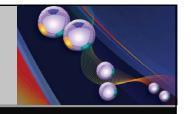

Pri-Med Annual Updates Houston, TX May 16, 2018



Practical Guide to the Management of Atherogenic Lipids

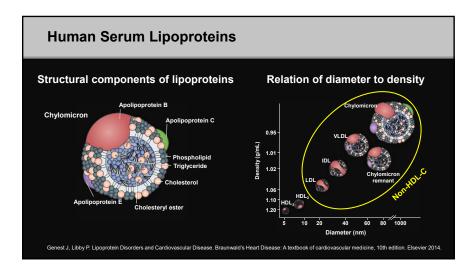
Learning Objectives

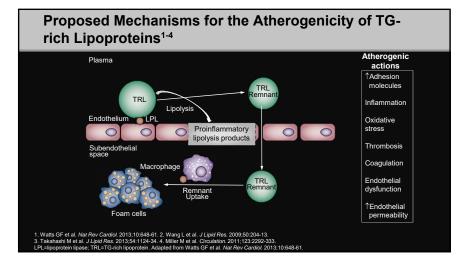
- Discuss the etiology, diagnosis (including non-HDL-C), and risk assessment of hypertriglyceridemia (HTG), and the impact of residual CVD risk that remains beyond statin therapy, including patients with HTG
- Summarize the clinical and genetic evidence for the observational and causal association between elevated triglycerides (TG) / TG-rich lipoproteins (TRL) and atherosclerosis
- Apply evidence-based guidelines to lifestyle and therapeutic approaches for managing patients with elevated non-HDL-C and HTG
- Describe the anti-atherosclerotic / anti-inflammatory properties of TG-lowering agents, with a focus on prescription omega-3 fatty acids (FA), and biologic/clinical characteristics of EPA and DHA
- Relate the current status and recommendations on omega-3 FA dietary supplementation
- Increase competency to formulate an action plan for managing elevated non-HDL-C and HTG, taking into account overall therapeutic value to achieve individualized patient goals

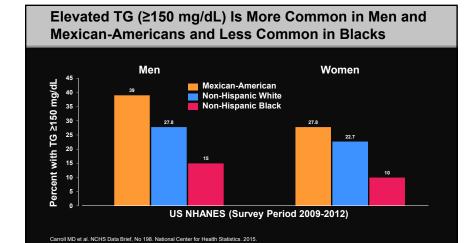
Atherogenic Lipids and Cardiovascular Disease

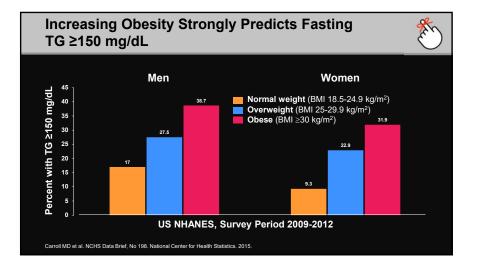
Sergio Fazio, MD, PhD

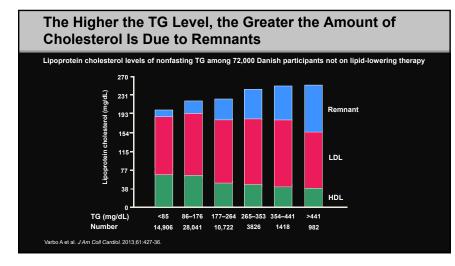
William and Sonja Connor Chair of Preventive Cardiology Professor of Medicine, Physiology & Pharmacology Director, Center for Preventive Cardiology Knight Cardiovascular Institute Oregon Health and Science University Portland, OR

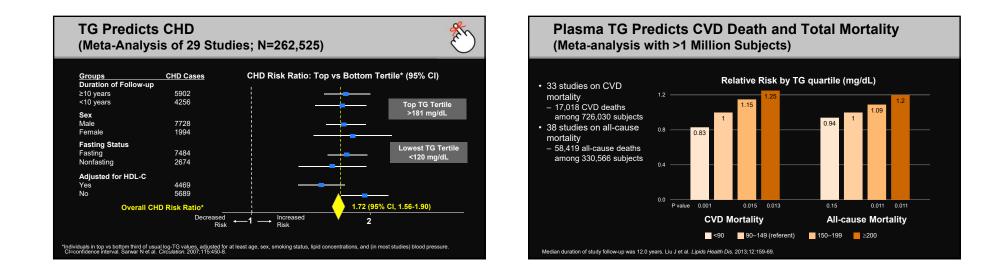

Introduction to Triglyceride-rich Lipoproteins

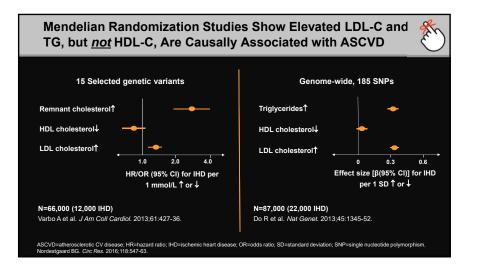


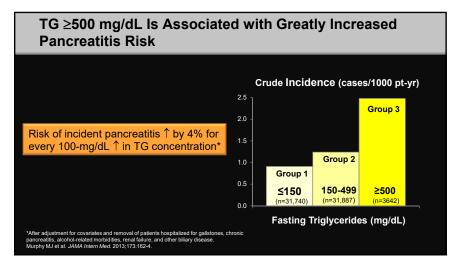


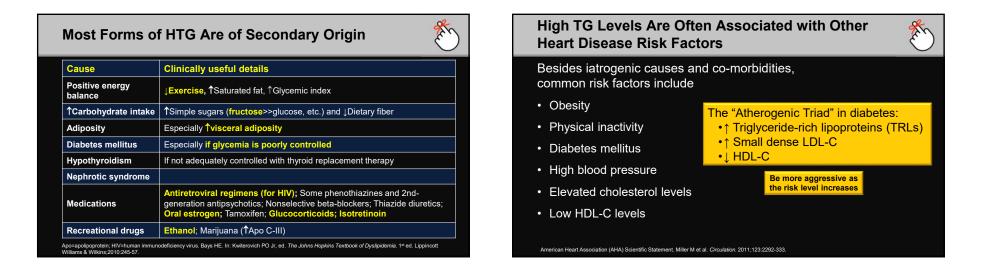

Meds: Atorvastatin 40 mg/d, metformin 1000 mg BID, HCTZ 50 mg/d Exam: BMI=34 kg/m², BP=128/82 mm Hg, Waist=36", Non-smoker Labs:

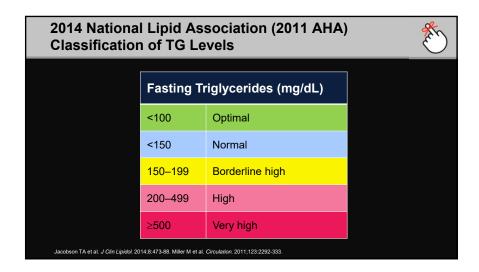

Fasting glucose	115 mg/dL				
A1c	6.2%				
TC	208 mg/dL				
TG	559 mg/dL				
HDL-C	36 mg/dL → These are all "pro-atherogenic" levels				
LDL-C	88 mg/dL				
Non-HDL-C	172 mg/dL				
A1c=glycosylated hemoglobin; BMI=body mass index; BP=blood pressure; CHD=coronary heart disease; HTG=hypertriglyceridemia;					

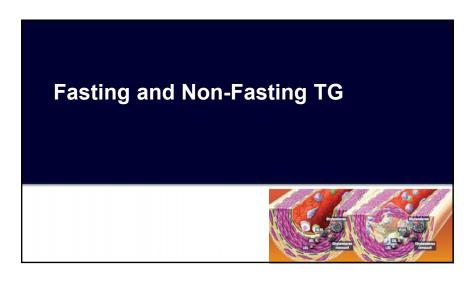


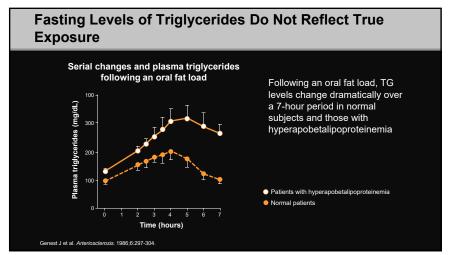


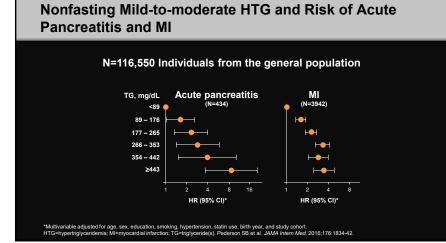


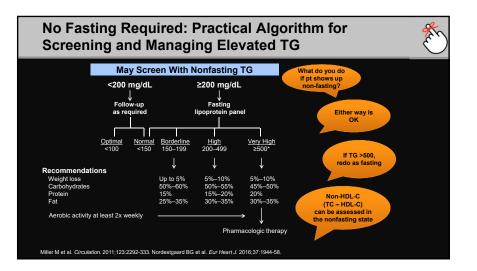


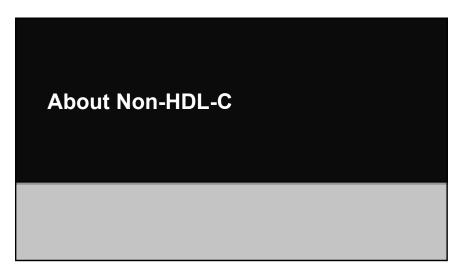


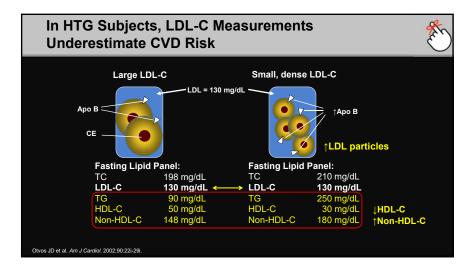


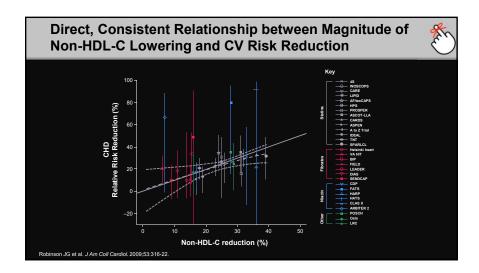


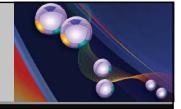












Summary

- Elevated TG levels are common in US population, especially in obese, male, Mexican-American, and those with diabetes
- Remnants of TG-rich lipoproteins (chylomicron remnants, smaller VLDL, IDL) promote atherogenesis
- Non-HDL-C is a better predictor of CVD than LDL-C, especially in patients with HTG
- · Very high TGs are associated with increased risk for pancreatitis

Practical Approach to the Management of Atherogenic Lipids

Matthew J. Budoff, MD Professor of Medicine David Geffen School of Medicine at UCLA Director of Cardiac CT, Division of Cardiology Harbor-UCLA Medical Center Torrance, CA

Atherosclerotic CVD Risk Categories and LDL-C Treatment Goals					
		Treatment goals			
Risk category	Risk factors/10-year risk	LDL-C (mg/dL)	Non-HDL-C (mg/dL)	Apo B (mg/dL)	
Extreme risk	Progressive ASCVD, including unstable angina in patients after achieving an LDL-C <70 mg/dL Established clinical CVD in patients with DM, CKD 3/4, or HeFH History of premature ASCVD (<55 male, <65 female)	<55	<80	<70	
Very high risk	Established or recent hospitalization for ACS, coronary, carotid or peripheral vascular disease, 10-year risk >20% Diabetes or CKD 3/4 with ≥1 risk factor(s) HeFH	<70	<100	<80	
High risk		<100	<130	<90	
Moderate risk		<100	<130	<90	
Low risk	0 risk factors	<130	<160	NR	

Treating Underlying Factors of HTG

- History of nutrition (calories, fat, sugar, alcohol, body weight and weight changes) and physical activity (frequency, type, intensity)
- Measure BMI & waist, TSH, fasting glucose A1c, urinary protein
- Prescribe low-calorie, low-sugar, low-to-no alcohol, and low-fat diet. Recommend patient-appropriate physical activity plan.
- Treat underlying diseases causing HTG (eg, hypothyroidism)
- Determine whether changes of TG-raising medications or supplements are needed

Bays HE. In: Kwiterovich PO Jr, ed. The Johns Hopkins Textbook of Dyslipidemia. 1st ed. Lippincott Williams & Wilkins;2010:245-57

NLA: Targets of Therapy – Triglycerides

Elevated TG level: Not a target of the rapy, except when very high (\geq 500 mg/dL)

- TG 200–499 mg/dL: Targets of therapy:
 - Non-HDL-C
 - LDL-C
- TG ≥500 mg/dL (especially ≥1000 mg/dL): Primary goal of therapy (to prevent pancreatitis):
 - $-\downarrow$ TG concentration to <500 mg/dL

NLA=National Lipid Association. Jacobson TA et al. J Clin Lipidol. 2014;8:473-88.

Lifestyle Approaches to the Management of HTG

Lifestyle and Diet Can Have Big Effects on Hypertriglyceridemia

Diet / Lifestyle Change

Weight loss in overweight or obese individuals (5–10%)

Diet

↑ Fruits, vegetables & low-fat dairy
 ↓ Total carb, added sugars

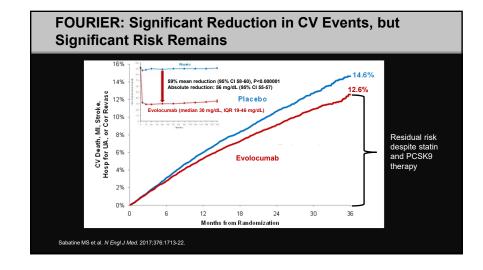
Miller M et al. J Am Coll Cardiol. 2008;51:724-30. Sampson UK et al. Curr Atheroscler Rep. 2012;14:1-10.

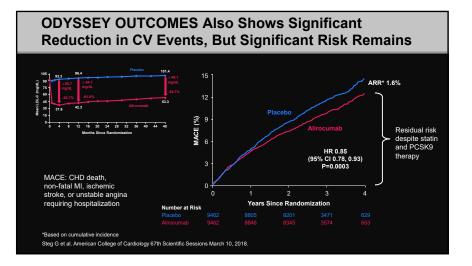
 \downarrow Saturated fats

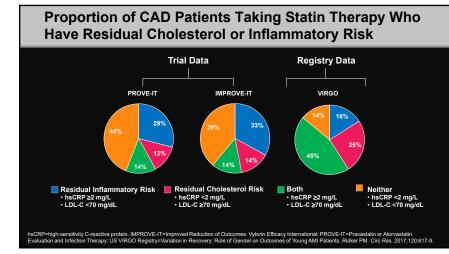
Exercise Brisk 30-min walk, 3x/wk

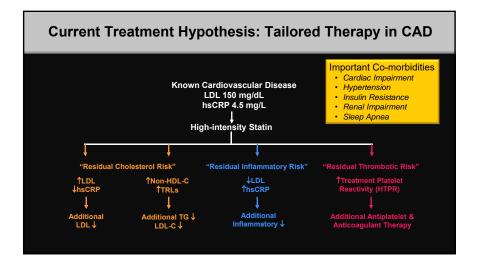
20% - 50% reduction in TG is possible with lifestyle interventions!

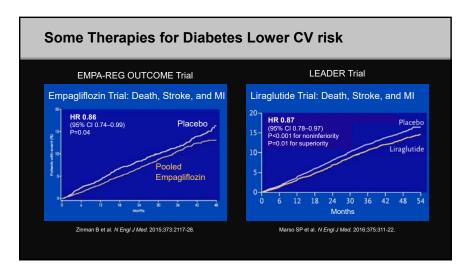
Physical Activity and Lipid Levels in Patients with Overweight or Obesity

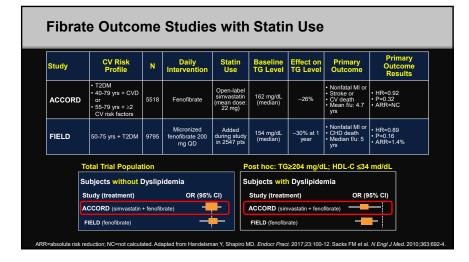

- ↓TG: 1st & most notable effect of ↑physical activity on lipid profile Exercise may ↓TG even without weight loss
 - Sustained 3%–5% weight \downarrow may cause clinically meaningful \downarrow TG
 - Degree of TG-lowering is proportional to baseline TG
- **†HDL-C:** Requires stable weight loss ± extensive physical activity
 – ~700–2000 kcal/week (~30 min/day, moderate intensity)
- LDL-C usually does not change
 - But \downarrow weight \pm \uparrow exercise should \uparrow particle size and may \downarrow LDL-C levels


Adapted from Bays HE et al. J Clin Lipidol. 2013;7:304-83. Couillard C et al. Arterioscler Thromb Vasc Biol. 2001;21:1226-32. Jensen MD et al. J Am Coll Cardiol. 2014;63(25 Pt B):2985-3023.


Diets Rich in Marine Sources of EPA and DHA Have Less Coronary Disease					
	EPA+DHA (mg/100 g)	Nurses' Health Stu	dy		
Anchovy	2055	 1,086,261 person-years of follow-up 574 incident strokes documented 			
Herring, Atlantic	2014				
Salmon, farmed	1966				
Salmon, wild	1840	# Marine-based Meals Stroke Reduc			
Mackerel, Atlantic	1203	1–3 per month	7%		
Bluefish	988	·	000/		
Sardines, Atlantic	982	1 per week	22%		
Trout	936	2–4 per week	27%		
Goldenbass (tilefish)	905	>5 per week	52%		
Swordfish	899	>5 per week	52%		
Tuna, white (albacore)	862				
Mussels	782	Iso H et al. JAMA. 2001:285:304-12.			
Striped bass	754				
Shark	689				
Pollock, Atlantic	542				
Mozaffarian D, Wu JHY. J Nutr. 2012	142:614S-625S. Data from the USDA Nation	al Nutrition Database for Standard Reference R	elease 23, 2010.		





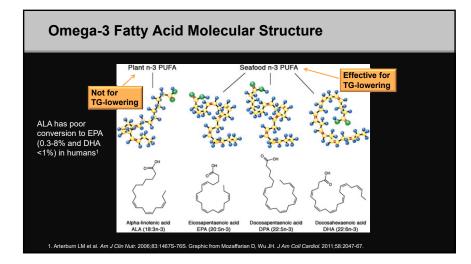

Working Towards a Pragmatic, Personalized Approach to Reduce Residual CVD Risk				
Threshold	Rx Value	Rx Representative		
≥70 mg/dL	Γ	Statin, Ezetimibe, PCSK9i		
≥6.5 mg/dL	Balance of	SGLT-2i, GLP-1 agonist		
>2 mg/L	• Safety	Canakinumab or methotrexate?		
ACS	• Cost	Single, dual antiplatelet, rivaroxaban?		
>150 mg/dL		Statin + Omega 3 or fibrate??		
	esidual CVD Threshold ≥70 mg/dL ≥6.5 mg/dL >2 mg/L ACS	Esidual CVD Risk Threshold Rx Value ≥70 mg/dL Balance of ≥6.5 mg/dL Efficacy >2 mg/L Safety ACS Cost		

Pharmacologic Management of HTG

	Current FDA-approved	
TG >500 mg/dL*	Notable Adverse Effects (AEs) [†]	
~	Myalgia, new-onset DM, hyperglycemia	
√	Eructation, dyspepsia, taste perversion	
\checkmark	Arthralgia	Ne
V	Abnormal liver function test, myalgia, increased creatinine, nausea	Ne
\checkmark	Flushing, nausea, diarrhea, vomiting, cough	
	TG >500 mg/dL* √	TG >500 mg/dL* Notable Adverse Effects (AEs) [†] √ Myalgia, new-onset DM, hyperglycemia √ Eructation, dyspepsia, taste perversion √ Arthralgia √ Abnormal liver function test, myalgia, increased creatinine, nausea

Statins Reduce CVD Events in HTG Patients (HTG Subgroup Data)

Trial (Subgroup, mg/dL)	Risk difference v		
(Drug)	All subjects	HTG subgroup	Median follow-up
WOSCOPS (TG ≥148) (Pravastatin)	-31% (<0.001)	-32% (0.003)	≥5 yrs.
CARE (TG ≥144) (Pravastatin)	-24% (0.003)	-15% (0.07)	
PPP Project (TG ≥200) (Pravastatin)	-23% (<0.001)	-15% (0.029)	
4S (TG >159, HDL-C <39) (Simvastatin)	-34% (<0.001)	-52% (<0.001)	
JUPITER (TG ≥150) (Rosuvastatin)	-44% (<0.001)	–21% (NS)	
CTT (TG >177) (Various)	-21% (<0.001)	-24% (<0.001)	
CARE=Cholesterol and Recurrent Events Trial; CTT=C Intervention Trial Evaluating Rosuvastatin; NS=not sign WOSCOPS=West of Socialand Coronary Prevention Stu Maki KC et al. J Clin Lipidol. 2012;6:413-26.	ificant; PPP=Prospective Pravastatin Pooli	ng; 4S=Scandinavian Simvastatin Survival Stu	dy;



FDA Withdraws Approval of Niaspan ER and Fenofibric Acid DR in Combination with Statins

On April 18th 2016, the FDA announced retraction of prior approvals related to combinations of statins with niacin extended release (ER) and statins with fenofibric acid delayed release (DR).¹

Besides being difficult to use, niacin causes a moderate increase in new-onset diabetes, making its use less desirable.²

1. http://www.pbm.va.gov/PBM/linksotherresources/ezminutes/docs/Statins_Niacin_or_Fibrates_EZ_Minutes_submission_5_2016.pdf 2. Goldie C et al. Heart. 2016;102:198-203.

Reported Clinical and Biologic CV Benefits of Omega-3 FA

AF=atrial fibrillation; CV=cardiovascular; FA=fatty acid(s). After Nelson JR et al. Vascul Pharmacol. 2017;91:1-9. After Bays HE. Chapter 21. The John Hopkins Textbook of Dyslipidemia, by Peter O Kwiterovich, 2010; 245-57.

Anti-arrhythmic

↓Sudden death (GISSI-P *only*) ↓AF ↓Protection against ventricular arrhythmias (vs ↑) Heart rate variability improvement

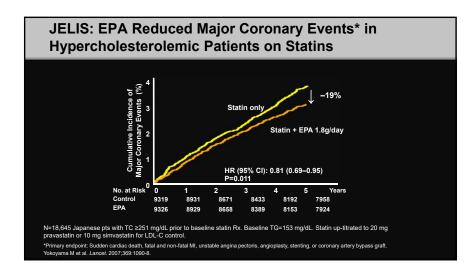
Anti-atherogenic

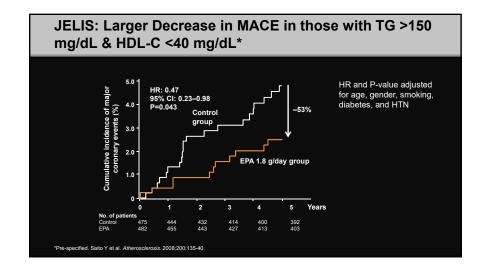
JNon-HDL-C ↓TG and ↓VLDL-C ↓Chylomicrons ↓VLDL and ↓Chylomicron remnants ↑HDL-C levels (vs ↓ w/ EPA-only) ↑LDL and HDL particle size Plaque stabilization Antithrombotic

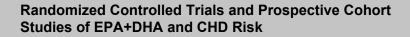
↓Platelet aggregation ↑Blood rheologic flow

Anti-inflammatory and endothelial protective effects

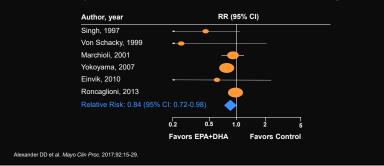
↓Endothelial adhesion molecules ↓Leukocyte adhesion receptor expression ↓Proinflammatory eicosanoids ↓Proinflammatory leukotrienes Vasodilation

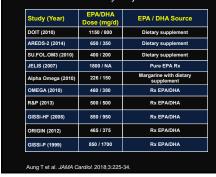

X

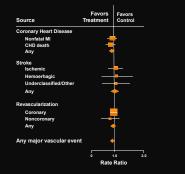

↓Systolic and diastolic BP


	EPA+DHA EE ^{1,2}	EPA only EE ³	EPA+DHA FFA ⁴
Brand Name	Lovaza	Vascepa	Epanova (not yet available)
Generic Available?	Yes⁵	No	No
Indication	Adjunct to diet to ↓TG levels in adult patients with severe HTG (≥500 mg/dL)		
Omega-3 Content	• EPA: 0.465 g • DHA: 0.375 g • EPA/DHA: 55%/45%	• EPA: 1 g • EPA/DHA: 100%/0%	• EPA: 0.55 g • DHA: 0.2 g • EPA/DHA: 73%/27%
Regimen, Capsules	• 2 BID w/ food or • 4 QD w/ food ²	• 2 BID w/ food	• 2 or 4 QD, meal independent

Similarities and Differences of Prescription Omega-3 Fatty Acid Formulations			
	EPA+DHA EE ^{1,2}	EPA only EE ³	EPA+DHA FFA ⁴
Brand Name	Lovaza	Vascepa	Epanova
Lowers TG	Yes	Yes	Yes
Lowers non-HDL-C	Yes	Yes	Yes
Raises LDL-C	Yes	No	Yes
			Not available now


 Lovaza prescribing information, generics available. 2. Omtryg prescribing information. 3. Vascepa prescribing information. 4. Epanova prescribing information Sperling LS, Nelson JR. Curr Med Res Opin. 2016;32:301-11.




Subjects with baseline TG levels >150 mg/dL

Confusing Meta-analysis Data on OM-3 Benefit Could Be Due to Dosing and Dietary Supplement Use

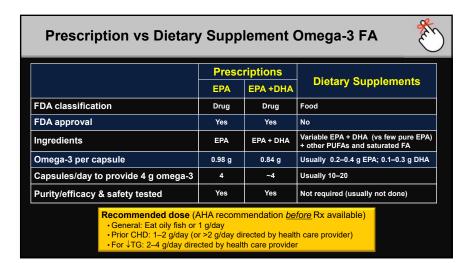
"... omega-3 fatty acids had no significant association with fatal or nonfatal coronary heart disease or any major vascular events."

CV Outcomes Trials in Patients with HTG				
	REDUCE-IT*	STRENGTH*	PROMINENT*	
Agent Dose	EPA (EE) 4 g/d	EPA+DHA (FFA) 4 g/d	SPPARMα – Pemafibrate 0.2 mg bid	
N	~8000	Estimated 13,000	Estimated 10,000	
Age	≥45 years	≥18 years	≥18 years	
Risk Profile	CVD (70%) or ↑CVD risk (30%)	CVD (50%) or ↑CVD risk (50%)	T2DM only CVD (2/3) or ↑CVD risk (1/3)	
Follow-up	4–6 years (planned)	3–5 years (planned)	5 years (planned)	
Statin Use	100% (at LDL-C goal)	100% (at LDL-C goal)	Moderate- / high-intensity or LDL <70 mg/dL	
Primary Endpoint	Expanded MACE	Expanded MACE	Expanded MACE	
Entry TG Entry HDL-C	200–499 mg/dL N/A	200–499 mg/dL <40 mg/dL M, <45 mg/dL W	200–499 mg/dL ≤40 mg/dL	

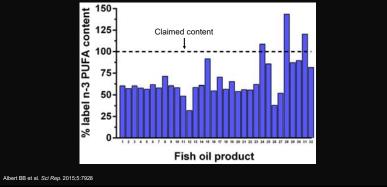
Low-Moderate Dose Omega-3 FA CV Outcomes Trials

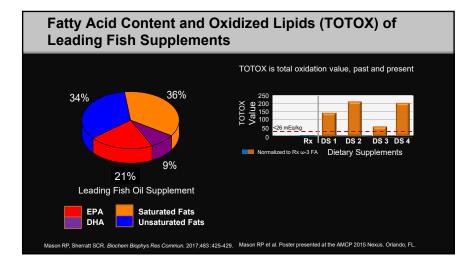
	VITAL Q2 2018	ASCEND Q2 2018	RESPECT-EPA Q4 2019
Funding	NIH funding	British Heart Foundation	Japan Heart Foundation
Study	Randomized, double-blind, placebo-controlled	Randomized, double-blind, placebo- controlled	Randomized, open-label
Patient Population	US adults (no elevated cancer or CVD risk)	Patients with diabetes, no initial CV event	Statin-treated patients with CAD
Treatments	Vitamin D 2000 IU/d Omacor (Lovaza) 1 g/d	Aspirin 100 mg/d Omacor (Lovaza) 1 g/d	EPA 1800 mg/d + statin Statin alone
N	25,875	15,480	3900
Primary Endpoint	Risk reduction of total cancer and major CVD events (composite endpoint)	Risk reduction for CV events (composite endpoint)	Risk reduction (secondary prevention) for CV events (composite endpoint)

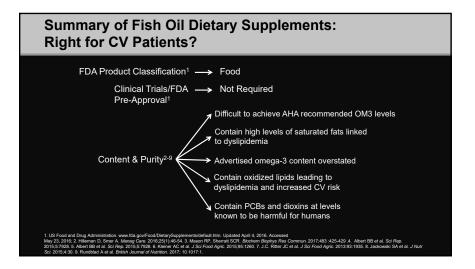
Non-Prescription Omega-3 Fatty Acids


Sergio Fazio, MD, PhD

Dietary Supplement Omega-3 FA Are Popular


- · Fish oil: Among the most commonly used dietary supplements by US adults¹
 - Global sales may reach \$3.3 billion by 2020
 - 19 million (8%) took fish oil dietary supplement in previous 30 days²
- No OTC omega-3 FA products in US (just Rx & dietary supplements)
- · Dietary supplements are unregulated. Their content, integrity and efficacy often remain unverified.3


Saturated fatty acid following isolation


- Barnes PM et al. National Health Statistics Reports. 2008;12:1-24.
 NIH NCCIH. Available at: https://nccih.nih.gov/health/omega3/introduction.htm
 Mason RP, Sherratt SC. *Biochem Biophys Res Commun.* 2017;483:425-9.

Dietary Supplement Omega-3 not Recommended to Treat Serious Medical Conditions

<u>APhA</u>

"While omega-3 dietary supplements can be an important part of consumer wellness, unlike regulated prescription and OTC drugs, dietary supplements are not required to meet strict FDA drug standards for safety, efficacy, and manufacturing and are not intended to treat serious medical conditions like VHTG. Patients should consult with their doctor about appropriate FDA-approved drug therapy."¹

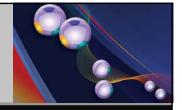
ADA Standards of Medical Care in Diabetes - 2017

"Randomized controlled trials also do not support recommending omega-3 supplements for primary or secondary prevention of CVD."²

Agarwal P. American Pharmacists Association Web site. https://www.pharmacist.com/apha-convenes-stakeholders-appropriate-omega-3-fish-oil-use-vht.
 Published April 21, 2015.
 AbA Standards of Medical Care - 2017. Diabetes Care. 2017;40(Suppl 1):S1-S135.

Summary

Guidelines and Recommendations


- Optimal TG level is <100 mg/dL
- Appropriate nutrition and physical activity in all
- Medical Rx for very high TG (>500 mg/dL) to help prevent pancreatitis
- Medical Rx for TG 200–500 mg/dL, consider in high-risk patient on statin (see below)
- Recommended Medical Rx
 - Statins (for all high risk with TG 200-500 mg/dL, unless statin-intolerant)
 - Fenofibrate*
 - Omega-3[†] (no dietary supplements for therapy)
 - Niacin difficult to use and no longer recommended

*HTG/low HDL-C subgroups had JCVD—T2DM cohort. †JELIS showed JCVD, HTG/low HDL-C subgroup especially positive.

Syllabi/slides for this program are a supplement to the live CME session and are not intended for other purposes.

an

Case Study and Q&A

Matthew J. Budoff, MD Sergio Fazio, MD, PhD

Case: 69-yo Hispanic Woman on Medicare with Insulin Resistance, CHD, HTN, and Moderate HTG

- S/P: MI 4 yrs, started on atorvastatin 40 mg/d. Repeat PCI 3 months ago, started on ezetimibe.
- Meds: Enalapril 10 mg/d, HCTZ 25 mg/d, atorvastatin 40 mg/d, ASA 81 mg/d, clopidogrel 75 mg/d, ezetimibe 10 mg/d

Exam: BMI=29 kg/m², BP=149/86 mm Hg, Waist=41", non-smoker

Labs:

A1c	6.4%	LDL-C	65 mg/dL
Glucose	123 mg/dL	HDL-C	50 mg/dL
TC	168 mg/dL	Non-HDL-C	118 mg/dL
TG	265 mg/dL		

ASA=aspirin; MI=myocardial infarction; PCI=percutaneous coronary intervention.

She now comes to visit you for a F/U, asking:

"What else should I do?" "Am I still at risk of having heart problems?"

"What about my triglycerides?"