Lecture Outline

- I. Diagnosis and Staging
- II. Prevention
- III. Treatment
 - A. Pharmacologic (including exacerbations)
 - B. Non-pharmacologic

COPD: Defining Terms

- Chronic bronchitis: daily cough and sputum production for at least 3 months out of the year for at least 2 consecutive years
- Emphysema: abnormal dilation of airspaces due to destruction of alveolar walls
- **COPD:** some combination of chronic bronchitis and emphysema, causing airflow obstruction that is not fully reversible

Mechanisms of Airflow Obstruction A B C Chronic Bronchitis Emphysema

Diagnosis of COPD

- Risk factors ... cigarette smoking
- Symptoms
- *** Spirometry ***
- In young person, consider antitrypsin deficiency

alpha-1

Diagnosis of Alpha-1 Antitrypsin (AAT) Deficiency

- Measurement of blood AAT level (homozygous deficiency causes blood levels 10-20% of normal).
- Confirmation with protein electrophoresis
 (MM = normal; ZZ = most common abnormal pattern)

Treatment of AAT Deficiency

- Alpha-1 augmentation therapy (weekly infusions of purified AAT protein)
- Test family members

Grading Severity (GOLD 2017): Airflow Obstruction

• Grade 1: FEV₁ >80% of predicted

• Grade 2: $FEV_1 \ge 50-80\%$

• Grade 3: FEV₁ ≥30-50%

• Grade 4: FEV₁ <30%

Other systems: BODE index (<u>B</u>ody mass index, <u>O</u>bstruction on spiromety, <u>D</u>yspnea score, and <u>E</u>xercise capacity)

Extrapulmonary Effects

- Weight loss
- Nutritional abnormalities
- Skeletal muscle dysfunction
- ... and frequent co-morbidities:
 - CAD, respiratory infections, lung cancer, osteoporosis, depression, diabetes, sleep disorders, anemia, glaucoma.

Prevention of COPD

- Preventing *onset* of disease
 - Smoking abstinence
- Preventing *progression* of disease
 - Smoking cessation
 - Alpha-1 antitrypsin augmentation therapy

Prevention of COPD (cont.)

- Preventing *exacerbations* of disease
 - Long-acting bronchodilators
 - Inhaled corticosteroids
 - Other medications

Treatment of COPD

Pharmacologic:

- Bronchodilators
- Corticosteroids
- Antibiotics

Non-pharmacologic:

- Home oxygen
- Pulmonary rehab
- Lung volume reduction

Bronchodilator Response in Stable COPD Percent 5,756 patient with change in FEV₁ COPD, following medication washout, given Absolute ipratropium 4 change in FEV₁ puffs followed by (ml) albuterol 4 puffs Absolute change in % pred. FEV₁ Tashkin DP, et al. Eur Resp J 2008; 31:742-50.

Bronchodilator Strategy in COPD: For Mild Disease

Quick-Acting Bronchodilators

- Beta-Agonists:
 - Albuterol, levalbuterol
- Anticholinergics:
 - Ipratropium
- Combination:
 - Albuterol + ipratropium

Bronchodilator Strategy in COPD: For More Severe Disease

Long-Acting Beta-Agonists (LABAs):

- 12-hour duration:
 - formoterol,salmeterol
- 24-hour duration:
 - vilanterol, oldaterol, indacaterol

Long-Acting Muscarinic Antagonists (LAMAs)

- 12-hour duration:
 - aclidinium, glycopyrrolate
- 24-hour duration:
 - tiotropium, umeclidinium,

Combination LABA and ICS

Twice-daily:

- Salmeterol + fluticasone propionate(multi-dose DPI and MDI)
- Formoterol + mometasone (MDI)
- Formoterol + budesonide (MDI)

Once-daily:

• Vilanterol + fluticasone furoate (multi-doseDPI)

Combination Long-Acting Bronchodilators: LABA + LAMA

Twice-daily:

- Formoterol + glycopyrrolate (MDI)
- Indacaterol + glycopyrrolate (single-dose DPI)

Once-daily:

- Vilanterol + umeclidinium (multi-dose DPI)
- Olodaterol + tiotropium (soft-mist inhaler)

Towards a Revolution in COPD Health (TORCH) Trial: Study Design

- 6112 patients current and former smokers
- Avg. FEV₁ = 1.12 L (44%)
- Avg. age = 65 years; Gender = 3:1 male
- Randomized to fluticasone-salmeterol (500/50), salmeterol alone, fluticasone alone, or placebo
- Primary endpoint: all-cause mortality at 3 yrs.

Calverley P, et al., NEJM 2007; 356:775.

TORCH Trial: Findings

Key findings:

1. Mortality:

 Fluticasone-salmeterol combination reduced mortality by 17.5% (p=0.052) compared to placebo

Calverley P, et al., NEJM 2007; 356:775.

TORCH Trial: Findings

Key findings:

2. Other health outcomes:

 Fluticasone-salmeterol combination reduced COPD exacerbations and improved lung function and health status scores more than placebo or monotherapy with salmeterol or fluticasone.

Calverley P, et al., NEJM 2007; 356:775.

TORCH Trial: Findings

Key findings:

3. Complications:

- Probability of pneumonia was sig. greater with combination therapy and with fluticasone alone than with salmeterol or placebo.
- Cataracts and bone fractures did not differ among groups.

Calverley P, et al., NEJM 2007; 356:775.

LABA/ICS vs. LABA/LAMA (FLAME)

- 3,300 patients with COPD.
- Randomly assigned to salmeterolfluticasone (LABA/ICS) twice-daily vs. indacaterol-glycopyrronium (LABA/LAMA) once daily.
- 52-week, double-blind, double-dummy trial.

Wedzicha JA, et al., *NEJM* 2016; 374:2222-34.

LABA/LAMA vs. LABA/ICS (FLAME)

- LABA/LAMA caused significantly greater bronchodilation.
- Fewer pneumonias in LABA/LAMA group

Wedzicha JA, et al., NEJM 2016; 374:2222-34.

(My) Current Thinking

- Do not use ICS alone
- LAMA or LABA/ICS similar as first choice
- LABA/LAMA provides greater improvement in lung function than LABA/ICS or LAMA alone
- Eosinophilic phenotype may benefit from ICS, targeted therapy

Initiating Therapy in Moderate-Severe COPD (cont.)

- Inhaled steroids may help reduce mucus hypersecretion and steroid-requiring exacerbations, but are more often associated with antibiotic-associated exacerbations.
- Other considerations:
 - Delivery system (MDI, DPI, soft-mist inhaler)
 - Once- or twice-daily dosing
 - Cost / insurance coverage

Treatment of Exacerbations: Steroids

A 5-day course of prednisone 40 mg/day is equally effective as a 14-day course at the same dose (the REDUCE trial).

Leuppi JD, et al. JAMA 2013; 309:2223-31.

Treatment of Exacerbations: Antibiotics

	Placebo	Antibiotics	
	% (n)	% (n)	
Success	55.0 (99)	68.1 (124)*	
No Resolution	23.3 (42)	18.7 (34)	
Deterioration	18.9 (34)	9.9 (18)*	
Other	2.9 (5)	3.2 (6)	
* p < 0.05		nthonisen NR, et al. tern Med 1987; 106:196.	Ann

Antibiotic Therapy in Exacerbations of COPD

Typical pathogens:

- Streptococcus pneumoniae
- Hemophilus influenzae
- Moraxella catarrhalis

Appropriate antibiotics:

- Trimethoprim-sulfa
- Amoxicillin-clavulanate
- Macrolides
- Cephalosporins (2nd gen.)
- Doxycycline
- Quinolones

Prevention of Frequent Exacerbations of COPD

- Roflumilast
 - Phosphodiesterase-4 inhibitor; once-daily tablet.
 - Weak bronchodilator properties.
 - GI side effects are common
- Azithromycin
 - Daily administration of 250 mg
 - Prolongs QT interval; increased risk of hearing loss

Home Oxygen Therapy: Effect on Survival Days from Admission to Trial Medical Research Council. Lancet 1981; 1(8222):681-6.

Criteria for Home Oxygen

Following maximal medical therapy; measured at rest:

- PaO2 < 55 mm Hg (SaO2 <88%); or
- PaO2 ≤ 59 mm Hg (SaO2 ≤90%) with
 - P pulmonale on ECG
 - Peripheral edema
 - Secondary erythrocytosis.

Long-Term Oxygen Treatment Trial (LOTT)

- National RCT in patients with low SaO2 at rest (but >88%) and/or oxygen desaturation with exertion.
- Random assignment to supplemental oxygen during exercise and sleep vs. observation.
- Primary outcomes: death or hospitalization

N Engl J Med 2016; 375:1617-27.

Mild Resting and Exercise-induced Hypoxemia (LOTT)

COPD with SaO₂ 89-93% at rest and/or <90% with exertion

N Engl J Med 2016; 375:1617-27.

Oxygen Delivery Systems

• Stationary (continuous flow)

Oxygen concentrator

 Portable (continuous or pulsed flow)

Outpatient Pulmonary Rehabilitation

- Two Sessions per week for 8 weeks:
 - Supervised exercise with 0₂ monitoring;
 - patient education about COPD;
 - social interaction with other persons with COPD.
- Outcomes:
 - Increased exercise capacity, and
 - improved sense of well-being.

Lung Volume Reduction Surgery

- Operation: resection of 25-30% of the most severely involved emphysematous lung tissue.
- Purpose: improved elastic recoil of remaining lung tissue and improved diaphragmatic function.
- Risks: prolonged bronchopleural fistula; ventilator dependence; death

NETT: Favorable Outcome in Subgroup Analysis

National Emphysema Treatment Trial Research Group, N Engl J Med 2003; 348:2059-2073

Bronchoscopic Approach to Lung Volume Reduction

- Novel, non-surgical approaches to lung volume reduction are being developed, including:
 - One-way endobronchial valves
 - Shape-memory coils

In Summary ...

- Interventions that prolong survival:
 - Smoking cessation
 - Supplemental oxygen in the chronically hypoxemic patient
 - Lung volume reduction (in emphysema subset)

In Summary ...

- Interventions that decrease exacerbations:
 - Medications (ICS, LABA, LAMA)
 - Chronic antibiotic suppression (azithromycin)
 - Roflumilast

In Summary ...

- Interventions that improve quality of life:
 - All of the above, and
 - Outpatient pulmonary rehabilitation

